
1

A Mathematical and Data-Driven Approach to Intrusion
Detection for High-Performance Computing

David H Bailey
Lawrence Berkeley National Laboratory
http://crd.lbl.gov/~dhbailey

With input from
Deborah Agarwal, Juan Meza, Scott Campbell, Orianna DeMasi, Mark Woods (LBNL)

Matt Bishop, Sean Whalen (UC Davis)
Vern Paxson (UCB, ICSI, LBNL)
Sean Peisert (UC Davis, LBNL)

Robin Sommer (ICSI, LBNL)
Funded via DOE/ASCR program on Complex, Distributed, Interconnected Systems

2

Approach

Challenge: Detect intrusion and misuse of HPC systems.
  Mathematics and statistics:

  Apply some known mathematical and statistical techniques to perform the
equivalent of credit card fraud detection on the access and usage of high-
performance computer systems.

  Investigate some new promising techniques that potentially might be more
effective.

  Data:
  Historical and near-real-time data from NERSC networks and systems.

  Network connection and protocols.
  System logs.
  Process accounting.
  Batch system and job scheduler data.
  Integrated Performance Monitoring (IPM) logs.

Funded through the DOE/ASCR program on Complex, Distributed,
Interconnected Systems.

3

The challenge of anomaly detection in
HPC cybersecurity

Intrusion/anomaly detection on HPC systems has the advantage of being a
specialized arena -- much less diverse than a general computing
environment -- but there are also some special challenges as well:

  Outlier detection and the high costs of errors:
  Finding a stable notion of “normal” is hard in a dynamically changing network

and HPC environment.
  Each mistaken false positive wastes the scarce time of system analysts.

  Interpretation of results:
  What does that anomaly mean?

  Evaluation of techniques:
  How do we make sure it actually works?

  Training data:
  What do we train our system with?

  Evasion risk:
  Can the attacker mislead our system?

4

Fingerprinting communication and
computation on HPC systems

  How do we identify what is running on HPC systems?
  Is a job similar to what a user normally runs?
  Is a job what a user should be running, based on their project?

  We need metrics for application-level data.
  We use MPI calls for now (logged via IPM library).
  In the future, we plan to also use performance counters.

IPM data:
  Current data is aggregated, not ordered.
  Data shows type of call, source and destination nodes, bytes sent,

number of times called.

We have used machine learning techniques to attempt to “fingerprint”
various applications running on large systems.

5

Early fingerprinting results

  Machine learning algorithms include kNN, naive Bayes, naive Bayes
multinomial, locally weighted learning (LWL), and “boosting.”

  Amount of data currently is very limited, but we have some early results.
  Analyzing data for all nodes of a run were poor -- less than 50% chance

of correctly identifying a particular code.
  Analyzing data for the first two nodes of a run (nodes 0 and 1) did much

better: kNN, naive Bayes multinomial, and LWL showed accuracy scores
of 80%.

6

Communications characteristics of
various numerical computations

Shoaib Kamil, Ali Pinar, Daniel Gunter, Michael Lijewski, Leonid Oliker, John Shalf,
“Reconfigurable Hybrid Interconnection for Static and Dynamic Scientific Applications,”
available at http://crd.lbl.gov/~oliker/papers/CF07.pdf.

7

General Relativity" Atmospheric Dynamics"

Plasma Physics" Performance Benchmark"

8

Second approach: Unsupervised
clustering using self-organized maps

  Projects high dimensional input space to
two dimensions.

  Preserves topology of input space.
  Few parameters to specify: learning rate,

map size.
Figure shows the clustering of the input

vectors. High intensity(green/yellow/red)
lines indicate borders between clusters.
There are roughly 6 clusters there.

The advantage of the SOM approach is we
don’t have to specify the number of
clusters -- it finds them for us.

9

Function Call" Bytes Sent" Destination" Region" # of Repeats"

These figures are graphs for individual features in the input vector: function
call, bytes sent, destination node, region code, and number of repeats. "

The highlighted features show that the map allows one to visualize
correlations between features. Here, the portion of the “number of repeats”
graph with high intensity has a correspondingly low intensity in the “bytes
sent” graph -- i.e., messages that are often repeated donʼt send much data.

Mapping from high-dimensional feature space
to 2-D preserves topological relationships

10

Mathematical details of cluster scheme

  Pairwise distances between each code’s distribution of communications
  Relative entropy (Kullback-Liebler Divergence) between discrete

distributions P and Q:

DKL(P ||Q) =
�

i

P (i) log
P (i)
Q(i)

11

Distances visualized as concentric
circles

gtc-256 gtc-64

This shows the relative
entropy (Kullback-
Liebler divergence)
between gtc-64 and
the other codes in our
test data, visualized as
concentric circles.
Note that gtc-256 is
closest to gtc-64
(center point).

This shows that
relative entropy is
small between runs of
a code with different
number of nodes, and
is large between
different codes.

12

The “rule ensemble” scheme

  Train on data to build a series of
decision trees. Each tree is a rule rk.

  Find coefficients ak by using
steepest descent method to solve
the optimization problem:

Combine rules into model F(x):

{âk}K
0 = arg min

{âk}K
0

1
N

N�

i=1

L

�
yi, a0 +

K�

k=1

akrk(xi) + λ
K�

k=1

|ak|
�

F (X) = a0 +
K�

k=1

akrk(X)

This scheme has been implemented, and is being tested on both
“toy” and real cybersecurity data.

13

Some challenges in obtaining good
data for rule ensemble scheme

  Logs come in unwieldy .xml files (up to 800 MByte for large runs).
  Preprocessing is required, as many GByte of data are required just to get

enough observations for the training set.
  Many logs are unlabeled -- called by username not name of the code.
  Scaling is required -- the number of total nodes affects the number of

times a call is made and the number of bytes.
  Distinguishing which runs are the duplicates is a challenge -- results may

land in both training data and testing data.
  Which information is important? Is it necessary to study the

communication behavior of all nodes, or just a few?

14

Tests of the rule ensemble scheme
using supernova data

  The Nearby Supernova Factory obtains images from the JPL Near Earth
Asteroid Tracking (NEAT) project and processes them at the NERSC
Parallel Distributed Systems Facility (PDSF). Each object is scored for
eccentricity, brightness, signal to noise ratio, and 21 other features.

  100 decision trees are built for each run.
  Each tree keeps building until a certain number of terminal nodes (drawn

from an exponential distribution) is reached.
  In these experiments, the average number of rules used was 6, so since

100 trees were built, on average 600 rules were used per ensemble.
  Each point in the following plots is the average of 25 runs.

15

Error rates for rule ensemble scheme
on supernova data

16

False positive rates for rule ensemble
scheme on supernova data

17

The challenge of data sanitization

One challenge is how to “redact” data -- remove personal information, so as to
facilitate open-community research and development.

  Permission issues -- must have explicit cooperation of those involved.
  Privacy requirements -- determine what can and cannot be revealed.
  Analysis requirements -- what must be revealed to enable appropriate use.
  Threat model -- what access to unredacted data does adversary have?
  What external knowledge does adversary have? (We may not know this.)
Relationships and attacks:
  Attacks succeed by discovering relationships:

  Within the redacted data set itself.
  Among redacted data and externally available data.
  Describe relationships before sanitizing:

  Build ontology.
  Determine what relationships will allow adversary to undo redaction.

M. Bishop, J. Cummins, A. Singh, D. Agarwal, S. Peisert, D. Frincke, and M. Hogarth, “A Data Sanitization
Framework,” to appear in Proceedings of the 2010 New Security Paradigms Workshop.

18

Summary

  A new cybersecurity project is addressing the unique challenges (and
opportunities) of a large high-performance computing environment.
  Unique network access patterns.
  Unique usage patterns.

  Initial work has focused on:
  Better understanding the challenges of machine learning in anomaly detection.
  “Fingerprinting” of communication and computation.
  Clustering with self-organized maps.
  “Rule ensemble” methods for automatic classification.

  Future plans:
  Improvement of data preprocessing.
  Improvement of fingerprinting, anomaly detection and rule ensemble schemes.
  Data sanitization -- to facilitate open-community research and development.
  Integration of these techniques into usable tools.

